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ABSTRACT
A new proof is given for Hausdorff's condition on a set of —oments whic™
determines when the function generating these moments is in L2, The pront
uses Legendre polynomials and their Adiscrete extensions found by Tchehvshod,
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Then an extension is given to a weighted L space using Jacobi rolvnorials

and their discrete extensions.
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SIGNIFICANCE AND EXPLANATION
The paper describes a method of obtaining in terms of the moments
approximations to the solutions of the finite moment problem

(1) [ (V=0,1,2,000)

0
In his paper [2] Hausdorff gave conditions on the moments uv for the
problems (1) to have a solution f(x) which is sguares integrable. However,
of the

our approximations are constructed in terms of the coefficients Cv

Legendre series expansion

f(x) ~
v

c P (2x - 1), (0 < x< 1),
Vv =

W18

0

where Pv(X) are the Legendre polynomials. The main result is that

Hausdorff's condition for a square integrable f(x) are here expressed in

to the c, is done by using

terms of the c,e This transition from the M,

a set of orthogonal polynomials on the discrete set x =0, x=1,.,..,x = n
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HAUSDORFF'S MOMENT PROBLEM AND EXPANSIONS IN LEGENDRE POLYNOMIALS

R. Askey, I. J. Schoenbery, and@ A. Sharma

1. Introduction. We refer to [3] for a description of the problem of Rellman,
Kalaba and Lockett (1] of obtaining approximation to the inverse Laplace
transform. They reduce the problem to the solution of the finite moment proble-
1
v

(1.1) [ f(x)x ax = T (Vv=0,1,.00,n =1

0
and obtain approximations for f(x) by applying Gauss' n-point quadrature formala
to the integrals (1) and use numerical approximations to the inverse of the matriv

of the system so obtained.

approximations to f(x) are obtained if we determine the polynomial

n-1
(1.2) R (x)= ' cpP (1 -2x)
n-1 6 Vv

of degree n ~ 1 which is the least square approximation to f(x) in {0,}

having moments uo,u1,...,u « The coefficients <, in (1.2) are agiven Y. +%o

n-1

lower triangular transformation

v

i, v+ i,V
(1.3) c, = (2v + 1) izo =0 (T ‘)(i)ui, (V=0,1,vea,n = 1) .

The numerical problem of Bellman, Kalaba and Lockett is thereby solved. Hawswor,

this approach shows that the infinite problem in [0,1]

Sponsored by the United States Army under Contract No. DAAGRO=R0-C-0041.
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In {3] it is shown that the inverse of the Gauss matrix is nct needed. Fa+*ey




]
(1.4) [ fox’ax = w,  (v=0,1,2 ... to infinity)
0

might be attacked in terms of the Legendre series expansion

o
(1.5) £x) ~ [ e R (1 -2x) .
v=0

Hausdorff devoted to the problem (1.4) his famous paper [2] in which he showed the
following:
A. The system
1

(1.6) [ x’ay(x) = p
0

\), (\)=0,1'2,.0.)

has a non-decreasing solution {(x) if and only if

n n
= - 4+ eee 4 - p ]
A um um (1)um+1 * =1 um-f-n 0 q
for m,n » 0.

B. The system (1.6) has a solution {Y(x) of bounded variations in (0,1} if )

and only if

n
-v
Z (:]lAn uv| =0(1) as n + o,

For a direct derivation of Hausdorff's conditions for A and B see {4]. ﬂ

C. The system (1.6) has a solution

X
wx) = [ o(x)ax
0

where ¢(x) € LP(0,1) with 1 < p < @, if and only if

. —
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n
(m+ 0P T (NN 1P = o)

A particular case of C is this (p = 2):
The moment problem
1
v
(1.7) [ fooxdx = u, (v=20,1,2,.0.0)
0

has a solution f(x) € L2(0,1) if and only if

2 2
(1.8) s = (n+1) (T) (8"%u,) = o) .

Ne-13

v=0

While Hausdorff's results A and B are most apt, it seems that the result (1.8) might
be profitably deduced from the expansion (1.5). Since v2n + 1 ?n(1 - 2x) are

orthonormal, we derive from the Riesz-Fisher theorem and

o o]
£(x) ~ ) —2 V2V + 1 P(1 = 2%)
0 Vav + 1

the following: The moment problem (1.7) has a solution f(x) € L2(0,1) if and only

if

n
(1.9) ) = 0(1) for all n .

2v+1 2v+1
(55 g = (55

2v+1
o e b -

Je reeeat-1)(%)

(1.10) B, *

Substituting (1.10) in (1.8) leads to




T

s - 2.2
17 % T 9 %
2 1 2 1 32
= - + -
S, % *&6 % t35 %
2 1 2 1 12
= L J— L J— + .
Sy % *5° T3St S

n
{
s = Z a c2 |
n n,v v
v=0
with a given by a reasonably simple expression. This will be shown in the nexs 1
r

section

2. Hausdorff Theorem via Orthogonal Polynomials

Using the notation introduced in the first section, we have

1

82 Mu = [ kU - 0™ Ve dx
\Y
0
n ! v \Y

= ) ¢ /] p 01 -20x°01 - x) " Vax
k=0 X0
n koK) (k+ 1)1 N

S AR YU
k=0 ° 3=0 39 0

(2.1 _T(v+ Oln - v+ 1) T T LA PGS
- " T(n + 2) wop K320, n+?

The shifted factorial (a)n is defined hy

(a) = '(n + a)
n I(a) ‘ '
Murphy's formula for Legendre polynomials was used

" - r=n, n+l o1 - x
(2.2) Pn(x) 2F1L P >

-4~




and the ceneralized hypergeometric function is defined by

al,...,ap E (a1)n L) (ép)n "
(2.3) F ot o= « - .
P aly (b1)n (bq)n n!

1,...,bq n=0

Using (2.1) in Sh gives

n n n |
1 <k, k+1, v+1 \ r=£, E+1, v+t
(2.4) § = —= z z c, c z F ( ; i 1,.F, :o
n n+1 k=0 £=0 kL ve0 32 1, n+2 32 1, n+2

If this quadratic form is to be diagonal, then the following orthogonality relaticn

must hold:

n
-k, k1, x+1, -8, 21, xH1 )
Z Pl mea P MR TS s ) =0 0k

Now

ko kA1, xb1

R (x) = F ( 1 w2 )

32

is a polynomial of degree n in x and it is relatively well-known that Tchehurhes
found a set of polynomials which are orthogonal on x = 0,1,...,n with respec* ¢~
the uniform distribution (see {5), $§2.8). This is what we want, but at €firet
glance, it seems we do not have it, since Tchebychef's polynorials are usuallv aicen

as

~k, k+1, -x

1, an 1], X,k = 0,1, .0.,n

Qy (x,m) = 3F2(

and this does not seem to bhe the same as Rk(x). However, there is a trans€orma:
formula which reconciles this difference,
«, a, b (e - a)y =k, a, d-b

)= — K. ¥ :

(2.5) 3F2( c, 4 ' (), 3 2'd4, a+1-k-¢’

To obtain (2.5), write ({4}, (4.1.3)) as an identity bhetween hyperaeometric srrine,

%




that is

(c - a)
k k, a 1 - x)

2F1( ¢ ;%) = (o), 2F1(a+1-k-c’

and integrate with respect to a beta distribution. Take a =k + 1,

c=n+2 and d4d=1 in (2.5) to get

(n+ 1 ~ k)k %, k1, -x. 1)

(2.6) R(X) =~ 7, . 3F2( 1 o

Using (2.6) above gives

2
{n + 1 =« k) n

L] e ?.
k=0 (n + 2)k x=0

The orthogonality relation for Qk(x) is

{n+ 1)(n + 2)k
kL (n + 1 - k)k'(Zk + 1)

n
) Q, (x,m)Q (x,n) = 8
x=0

sO

2
. - 3 ck i (n+ 1 - k)k
1) k=0 2k + 1 (n + 2)k

n
Siner (n + 1 =~ k)k/(n + 2)k <1, s « z ci/(zk + 1), which proves one of the

required inequalities.
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Conversely, if Sn = 0(1), then

2 2 2 2
E X } g ck ) (n + 1 =~ k)k
k=0 k=g (2K T2 2

3. A Weighted Hausdorff Moment Problem

Extensions of Legendre polynomials and the discrete Tchebychef polynomials
exist, so it is natural to see if they can be used to obtain an extension of
Hausdorff's theorem. To this end, set

! v+ 8
(3.1) Moo= f Flx)x (1 - x) dx, v=0,1,2,... (a;B > -1) .

Voo

a
Polynomials orthoagonal with respect to x (1 - x)8 on (0,1} are known. Thev are

called Jacobi polynomials and are given by

(a,B) fa + 1)n ‘-n, nta+B+1
(3.2) Pn (1 - 2x) = YR 2F‘1( ot X} o.
Set
o
f(x) ~, ¢ pt@f) iy _ oy
6 Vv

-7-




e 2y —

where c, is determined by

1

1 (o, B, _ @, _ B
(3.3) c, = (a,e)f £(x)P (1 = 2)x (1 = x)“dx
h 0
\Y)
and
1
(3.4) [l Cayp % By Lok ®1 - 0 Bax = &, n(®8)
0 n k kn' 'n
with
(a8 | T(n+ a+ 1)I(n+ B+ 1)
n 2n + a + B8 + N)I{n+a+ B + 1) ¢« n! °
As in the last section
n=-v ! v+Q =-V+R
A0 = [ ogxt (1 - x) T Rax
\Y
0
n ! (a,B) v+ -V+8
= 1 o [ 220 - 205" - 0" Pax
k=0 0
_ T(v+a+1)T(n-v+B+1) no (e Yy . (-k, k+a+B+1, viat+t
T(n+a+B+2) o k! %% " 3720 a+1,  n+a+se2
Using (2.5) gives
T(n +a +8 + 2)A"'Vuv
T(v+a+ 1)I(n=-v+B8+1)
(3.5)
- n la+ 1)k c (n+1 - k)k . [-k. k+a+3+1 .
k! k{n+a+B+2) 320 a+, -n ' ’

k=0

The ageneral discrete Tchebychef polynomials (6]

Hahn polynomials) are given by

(or to use their common name,

+he




. L =k, k+ta+id+1, =-x
(3.6) Qk(x.a,S,n) 3F2\ a+1, -n ,

Their orthogonality relation i-

+a  N-x+§ .
x /% Nex /

fi 0—13

NS
Qk(X:u.S,n)Qj(x:a,s,n)\

x=0

; 1\, (k,x = 0,1,...,n)

(3.7) (o + 8 +2) kM {n+a+3+2) (2 + 1) (a+ 7+ 1,
n X k

0 €3,k €n .

(v+a\(n-v+8\

Square {(3.5), multiply by v /N pey -

resulting identity is

6 .
j ! + - + + 2 + 1 o+ + 2+ 1
ik n!(n 1 k)k(a 1)k(a )k(Zk 1 )

and sum. After simplification,

tre

80 an argument similar to the one in §2 gives the ¢ollrwina:

T m 1. Defi by (3.1). JE > -1,
heorem efine u = by ( ). Then for a,f

1

2 s
JOFGa (1~ x;ax <o
0
if and only if
v n=v 2,0 Iin + &+ ¢ + 2)
[a A = n = 0(1)
ve v vOT(v 4+ a4+ 1T{n ~ v+ 2+ 1,

This can he rephrased as

Y + 1 14
? [An-vu ’Z(n} T'(n + a + B8 + 2) ? 2%(a,8) . (n Y
[ / + - . " T o
veo v v: T(v + «a 1) (n v+ 1) k=0 X k (n + a + + 2)k
The Riesz-Fisher theorem for Jacobi series is
! 2 o g X 2 (a,’)
[P0 - ofax = Dm0
0 k=0




T - S eg— - Y ol . s
1 g 2 ax
[ oreeaxt - 071 —
0 x (1 - x)
if and only if
n v 2/n 2 1
(n+ 1) ) " 19 (0) = ot
% v v a
v+ =
[n + 1 ] [1 -
when ao,B8 > -1.
-10=-
e . . .

e,




()

(2]

[3]

{41

{51]
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